Usefulness of open data to determine the incidence of COVID-19 and its relationship with atmospheric variables in Spain during the 2020 lockdown
Jose-Jacobo Zubcoff,
Jorge Olcina,
Javier Morales,
Jose-Norberto Mazón and
Asunción M. Mayoral
Technological Forecasting and Social Change, 2023, vol. 186, issue PA
Abstract:
The SARS-CoV-2 pandemic and the spread of the COVID-19 disease led to a lockdown being imposed in Spain to minimise contagion from 16 March 2020 to 1 May 2020. Over this period, measures were taken to reduce population mobility (a key factor in disease transmission). The scenario thus created enabled us to examine the impact of factors other than mobility (in this case, meteorological conditions) on the incidence of the disease, and thus to identify which environmental variables played the biggest role in the pandemic's evolution. Worthy of note, the data required to perform the study was entirely extracted from governmental open data sources. The present work therefore demonstrates the utility of such data to conduct scientific research of interest to society, leading to studies that are also fully reproducible. The results revealed a relationship between temperatures and the spread of COVID-19. The trend was that of a slightly lower disease incidence as the minimum temperature rises, i.e. the lower the minimum temperature, the greater the number of cases. Furthermore, a link was found between the incidence of the disease and other variables, such as altitude and proximity to the sea. There were no indications, however, in the study's data, of a relationship between incidence and precipitation or wind.
Keywords: COVID-19; Incidence; Atmospheric variables; Lockdown; Confinement; Open data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162522006291
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:186:y:2023:i:pa:s0040162522006291
DOI: 10.1016/j.techfore.2022.122108
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().