A smart grids knowledge transfer paradigm supported by experts' throughput modeling artificial intelligence algorithmic processes
Waymond Rodgers,
Jesus A. Cardenas,
Leopoldo A. Gemoets and
Robert J. Sarfi
Technological Forecasting and Social Change, 2023, vol. 190, issue C
Abstract:
This paper presents an artificial intelligence algorithmic knowledge transfer approach to the models that have been developed throughout the world for smart grid networks. Many nations are moving forward to implement smarter ways to generate, distribute and network energy, while others are expecting the leading countries to take the initiative and then follow suit. Therefore, we theoretically identify three dimensions of experts' competencies—perception, judgment, and decision choice supported by the Throughput Model algorithms for knowledge transfer. Integrating the Throughput Model algorithmic framework and Deming Cycle (i.e., plan, do, check, act), we propose that Information and Communication Technology (ICT) systems influence experts' decision making towards implementation of Smart Grids (SG). This model was backed up with the perspectives of 32 global experts as surveyed using Carnegie Mellon Maturity model questions and analyzed the results using PLS to validate the findings and compare them to our enhanced knowledge transfer developed from Deming's PDCA cycle. Our results suggest that these key algorithmic decision-making components are critical in explaining the successful application of planning, doing, checking/ acting, and planning of renewable energy technology as well as for a greener environment.
Keywords: Artificial intelligence; Algorithms; Decision making; Knowledge management; Throughput model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523000586
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:190:y:2023:i:c:s0040162523000586
DOI: 10.1016/j.techfore.2023.122373
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().