Digital twin-driven real-time planning, monitoring, and controlling in food supply chains
Pratik Maheshwari,
Sachin Kamble,
Amine Belhadi,
Mani Venkatesh and
Mohammad Zoynul Abedin
Technological Forecasting and Social Change, 2023, vol. 195, issue C
Abstract:
There needs to be more clarity about when and how the digital twin approach could benefit the food supply chains. In this study, we develop and solve an integrated problem of procurement, production, and distribution strategies (PPDs) in a medium-scale food processing company. Using the digital twin approach, the model considers the industrial symbiosis opportunities between the supplier, manufacturer, and customer using interval and sequence variables operating in a constrained environment using mixed-integer linear programming (MILP) and agent-based simulation (ABS) methodology. The study optimizes the make-span and lead time, simultaneously achieving a higher level of digitalization. The analysis demonstrates how digital twin accelerates supply chain productivity by improving makespan time, data redundancy (DR), optimal scheduling plan (OSP), overall operations effectiveness (OOE), overall equipment effectiveness (OEE), and capacity utilization. Our findings provide compelling evidence that the seamless integration PPDs enormously enhance production flexibility, resulting in an excellent service level of 94 %. Managers leverage real-time simulation to accurately estimate the replenishment point with minimal lead time, ensuring optimized operations.
Keywords: Digital twin; Food supply chain; Mixed integer linear programming; Agent-based simulation; Digital supply chain; Anylogic, Industry 4.0 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523004845
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004845
DOI: 10.1016/j.techfore.2023.122799
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().