Digitalisation dynamics in SMEs: An approach from systems dynamics and artificial intelligence
Carlos F.A. Arranz,
Marta F. Arroyabe,
Nieves Arranz and
Juan Carlos Fernandez de Arroyabe
Technological Forecasting and Social Change, 2023, vol. 196, issue C
Abstract:
This paper addresses the study of digitalisation dynamics in SMEs. Improving on existing research and its methodological limitations, we provide an understanding of the digital transformation in SMEs by approaching the research from a non-linear and complex perspective. We empirically test our hypotheses using the Eurostat Flash Eurobarometer No. 486 data set, with a final sample of 16,365 SMEs. Our first contribution shows that an adequate understanding of digital transformation not only implies the identification of drivers of digitalisation but also a grasp of how these drivers act, highlighting the differential effect that internal capabilities and external support of the company in interaction have on digital transformation. Moreover, the results show that the effect of interactions between variables is transferred to the output variable in a non-linear process, which may contain an optimum produced by a differential combination of input variables. Second, the paper extends the research methodology, emphasising the importance of combining classic regression analysis with machine-learning techniques. Thus, using a systemic approach, we conclude that the combination of the explanatory power of regression models and machine learning allows us to quantify and explain how variables act, solving complex and non-linear problems.
Keywords: Digitalisation; Dynamics; SME; System dynamics; Artificial intelligence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523005656
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:196:y:2023:i:c:s0040162523005656
DOI: 10.1016/j.techfore.2023.122880
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().