Modeling social coupon redemption decisions of consumers in food industry: A machine learning perspective
Pappu Kalyan Ram,
Neeraj Pandey and
Jinil Persis
Technological Forecasting and Social Change, 2024, vol. 200, issue C
Abstract:
Social couponing is a growing promotional phenomenon in the service industry. However, since the conversion rate of distributed coupons into coupons redeemed for purchase is relatively low, there is a need to understand the redemption decisions of consumers. Lower conversion rates lead businesses to lose both customers and profits. Previous studies have typically focused on social couponing from a business perspective, without exploring factors from the customer's end. The current study explores the factors influencing customers' decision to redeem coupons and highlights the interrelationships between the factors. Data were collected from 353 online customers on their redemption experiences during their food purchases. Structural equation modeling was performed to examine the significance of the factors and establish the predictability of customers' redemption decisions. We then explored different machine learners to identify the best-fitting models for customers' redemption decisions. Results showed that the prediction accuracy of the decision-tree-based models was the highest. These models delineate the role of influencers in various redemption aspects and validate the mediation effects of perceived risk, deal proneness, referral, and consumption frequency. The study also highlights future research areas in the social couponing domain.
Keywords: Social coupon; Promotion; Redemption; Machine learning; Analytics; Decision tree (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523007783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:200:y:2024:i:c:s0040162523007783
DOI: 10.1016/j.techfore.2023.123093
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().