EconPapers    
Economics at your fingertips  
 

Artificial intelligence and algorithmic bias? Field tests on social network with teens

G. Cecere, C. Jean, F. Le Guel and M. Manant

Technological Forecasting and Social Change, 2024, vol. 201, issue C

Abstract: Artificial intelligence (AI) is a general purpose technology that is used in many sectors. However, automated decision-making powered by AI algorithms can lead to unintended outcomes, especially in the context of online platforms. The lack of transparency related to AI algorithms and their categorization methods make practical insights into effective management of the risks associated to their utilization of crucial importance. We address these issues through two field tests aimed at mitigating biases in online science, technology, engineering, and mathematics (STEM) education-related ads targeting teenagers. We conducted online ad campaigns involving gender-unspecific, women-specific, and gender-neutral ads targeted at young social network users. Our findings show that inclusion in the ad of a gender-oriented message tends to alleviate algorithmic gender bias but also reduced overall ad visibility. Our research shows also that text length has a significant impact on ad visibility, and that gender-oriented messages influence the display of the ad based on gender.

Keywords: Artificial intelligence; Algorithmic bias; Field tests; Audit; Online social network (search for similar items in EconPapers)
JEL-codes: M3 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523008892
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:201:y:2024:i:c:s0040162523008892

DOI: 10.1016/j.techfore.2023.123204

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:201:y:2024:i:c:s0040162523008892