EconPapers    
Economics at your fingertips  
 

Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework

Jingjun Guo, Weiyi Kang and Yubing Wang

Technological Forecasting and Social Change, 2024, vol. 204, issue C

Abstract: This article introduces a dynamic ensemble framework that integrates parametric and non-parametric pricing models. Within this framework, we propose a time-varying parametric pricing model optimized using artificial intelligence algorithms. Additionally, we construct a non-parametric pricing model using a 2-dimensional convolutional neural network (2D-CNN) to capture the interactions among options, enhancing the existing non-parametric pricing model. Validation using China's SSE 50 ETF options trading data reveals several key findings: Firstly, the dynamic integration method proposed in this study not only improves prediction accuracy but also enhances stability. Secondly, previous parametric pricing models do not effectively utilize their pricing performance, while our proposed time-varying parametric pricing model significantly enhances accuracy. Lastly, the 2D-CNN model, which considers interactions among options trades, proves to be reasonable and effective, outperforming common non-parametric pricing models. The dynamic ensemble framework proposed in this study effectively combines the strengths of both parametric and non-parametric pricing models. This research serves as an important reference for risk managers, institutional investors, and other stakeholders. Furthermore, it provides valuable research ideas for future scholars in the field.

Keywords: Options price forecasting; Options pricing; Parameter optimization; Deep learning; Dynamic ensemble; Artificial intelligence algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162524002257
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:204:y:2024:i:c:s0040162524002257

DOI: 10.1016/j.techfore.2024.123429

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:204:y:2024:i:c:s0040162524002257