Where is synergy indicated in the Norwegian innovation system? Triple-Helix relations among technology, organization, and geography
Øivind Strand and
Loet Leydesdorff
Technological Forecasting and Social Change, 2013, vol. 80, issue 3, 471-484
Abstract:
Using information theory and data for all (0.5million) Norwegian firms, the national and regional innovation systems are decomposed into three subdynamics: (i) economic wealth generation, (ii) technological novelty production, and (iii) government interventions and administrative control. The mutual information in three dimensions can then be used as an indicator of potential synergy, that is, reduction of uncertainty. We aggregate the data at the NUTS3 level for 19 counties, the NUTS2 level for seven regions, and the single NUTS1 level for the nation. Measured as in-between group reduction of uncertainty, 11.7% of the synergy was found at the regional level, whereas only another 2.7% was added by aggregation at the national level. Using this Triple-Helix indicator, the counties along the west coast are indicated as more knowledge-based than the metropolitan area of Oslo or the geographical environment of the Technical University in Trondheim. Foreign direct investment seems to have larger knowledge spill-overs in Norway (oil, gas, offshore, chemistry, and marine) than the institutional knowledge infrastructure in established universities. The northern part of the country, which receives large government subsidies, shows a deviant pattern.
Keywords: Triple Helix; Synergy; R&D funding; Norway (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162512001928
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:80:y:2013:i:3:p:471-484
DOI: 10.1016/j.techfore.2012.08.010
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().