Heterogeneity in diffusion of innovations modelling: A few fundamental types
Renato Guseo and
Mariangela Guidolin
Technological Forecasting and Social Change, 2015, vol. 90, issue PB, 514-524
Abstract:
Heterogeneity of agents in aggregate systems is an important issue in the study of innovation diffusion. In this paper, we propose a modelling approach to latent heterogeneity, based on a few fundamental types, which avoids cumbersome integrations with not easy to motivate a priori distributions. This approach gives rise to a discrete non-parametric Bayesian mixture model with a possibly multimodal distributional behaviour. The result is inspired by two alternative theories: the first is based on the Rosenblueth two-point distributions (TPD), and the second is related to Cellular Automata models. From a statistical point of view, the proposed reduction allows for the recognition of discrete heterogeneous sub-populations by assessing their significance within a realistic diffusion process. An illustrative application is discussed with reference to Compact Cassettes for pre-recorded music in Italy.
Keywords: Latent heterogeneity of agents; Multimodality; Diffusion of innovations; Two-point distributions; Non-parametric Bayesian mixture models; Connectivity strength; Moore and von Neumann neighborhoods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162514000870
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:90:y:2015:i:pb:p:514-524
DOI: 10.1016/j.techfore.2014.02.023
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().