Clines with partial panmixia across a geographical barrier in an environmental pocket
Thomas Nagylaki and
Kai Zeng
Theoretical Population Biology, 2016, vol. 110, issue C, 1-11
Abstract:
In a geographically structured population, partial global panmixia can be regarded as the limiting case of long-distance migration. On the entire line with homogeneous, isotropic migration, an environmental pocket is bounded by a geographical barrier, which need not be symmetric. For slow evolution, a continuous approximation of the exact, discrete model for the gene frequency p(x) at a diallelic locus at equilibrium, where x denotes position and the barrier is at x=±a, is formulated and investigated. This model incorporates viability selection, local adult migration, adult partial panmixia, and the barrier. The gene frequency and its derivatives are discontinuous at the barrier unless the latter is symmetric, in which case only p(x) is discontinuous. A cline exists only if the scaled rate of partial panmixia β<1; several qualitative results also are proved. Formulas that determine p(x) in a step-environment when dominance is absent are derived. The maximal gene frequency in the cline satisfies p(0)<1−β. A cline exists if and only if 0≤β<1 and the radius a of the pocket exceeds the minimal radius a∗, for which a simple, explicit formula is deduced. Given numerical solutions for p(0) and p(a±), an explicit formula is proved for p(x) in |x|>a; whereas in (−a,a), an elliptic integral for x must be numerically inverted. The minimal radius a∗∗ for maintenance of a cline in an isotropic, bidimensional pocket is also examined.
Keywords: Geographical structure; Spatial structure; Population structure; Migration; Long-distance migration; Selection (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580916300016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:110:y:2016:i:c:p:1-11
DOI: 10.1016/j.tpb.2016.03.003
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().