EconPapers    
Economics at your fingertips  
 

Forward and backward evolutionary processes and allele frequency spectrum in a cancer cell population

Hisashi Ohtsuki and Hideki Innan

Theoretical Population Biology, 2017, vol. 117, issue C, 43-50

Abstract: A cancer grows from a single cell, thereby constituting a large cell population. In this work, we are interested in how mutations accumulate in a cancer cell population. We provide a theoretical framework of the stochastic process in a cancer cell population and obtain near exact expressions of allele frequency spectrum or AFS (only continuous approximation is involved) from both forward and backward treatments under a simple setting; all cells undergo cell divisions and die at constant rates, b and d, respectively, such that the entire population grows exponentially. This setting means that once a parental cancer cell is established, in the following growth phase, all mutations are assumed to have no effect on b or d (i.e., neutral or passengers). Our theoretical results show that the difference from organismal population genetics is mainly in the coalescent time scale, and the mutation rate is defined per cell division, not per time unit (e.g., generation). Except for these two factors, the basic logic is very similar between organismal and cancer population genetics, indicating that a number of well established theories of organismal population genetics could be translated to cancer population genetics with simple modifications.

Keywords: Allele frequency spectrum; Cancer; Population genetics; Branching theory; Coalescent theory (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580917300849
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:117:y:2017:i:c:p:43-50

DOI: 10.1016/j.tpb.2017.08.006

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:117:y:2017:i:c:p:43-50