Estimating the basic reproductive number during the early stages of an emerging epidemic
Nicolas P. Rebuli,
N.G. Bean and
J.V. Ross
Theoretical Population Biology, 2018, vol. 119, issue C, 26-36
Abstract:
A novel outbreak will generally not be detected until such a time that it has become established. When such an outbreak is detected, public health officials must determine the potential of the outbreak, for which the basic reproductive numberR0 is an important factor. However, it is often the case that the resulting estimate of R0 is positively-biased for a number of reasons. One commonly overlooked reason is that the outbreak was not detected until such a time that it had become established, and therefore did not experience initial fade out. We propose a method which accounts for this bias by conditioning the underlying epidemic model on becoming established and demonstrate that this approach leads to a less-biased estimate of R0 during the early stages of an outbreak. We also present a computationally-efficient approximation scheme which is suitable for large data sets in which the number of notified cases is large. This methodology is applied to an outbreak of pandemic influenza in Western Australia, recorded in 2009.
Keywords: Basic reproductive number; Continuous-time Markov chain; Hybrid discrete-continuous (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580917300114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:119:y:2018:i:c:p:26-36
DOI: 10.1016/j.tpb.2017.10.004
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().