On the decidability of population size histories from finite allele frequency spectra
Soheil Baharian and
Simon Gravel
Theoretical Population Biology, 2018, vol. 120, issue C, 42-51
Abstract:
Understanding the historical events that shaped current genomic diversity has applications in historical, biological, and medical research. However, the amount of historical information that can be inferred from genetic data is finite, which leads to an identifiability problem. For example, different historical processes can lead to identical distribution of allele frequencies. This identifiability issue casts a shadow of uncertainty over the results of any study which uses the frequency spectrum to infer past demography. It has been argued that imposing mild ‘reasonableness’ constraints on demographic histories can enable unique reconstruction, at least in an idealized setting where the length of the genome is nearly infinite. Here, we discuss this problem for finite sample size and genome length. Using the diffusion approximation, we obtain bounds on likelihood differences between similar demographic histories, and use them to construct pairs of very different reasonable histories that produce almost-identical frequency distributions. The finite-genome problem therefore remains poorly determined even among reasonable histories. Where fits to few-parameter models produce narrow parameter confidence intervals, large uncertainties lurk hidden by model assumption.
Keywords: Demographic inference; Frequency spectrum; Diffusion; Wright–Fisher (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S004058091730148X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:120:y:2018:i:c:p:42-51
DOI: 10.1016/j.tpb.2017.12.008
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().