Cryptic selection forces and dynamic heritability in generalized phenotypic evolution
William Gilpin and
Marcus W. Feldman
Theoretical Population Biology, 2019, vol. 125, issue C, 20-29
Abstract:
Individuals with different phenotypes can have widely-varying responses to natural selection, yet many classical approaches to evolutionary dynamics emphasize only how a population’s average phenotype increases in fitness over time. However, recent experimental results have produced examples of populations that have multiple fitness peaks, or that experience frequency-dependence that affects the direction and strength of selection on certain individuals. Here, we extend classical fitness gradient formulations of natural selection in order to describe the dynamics of a phenotype distribution in terms of its moments—such as the mean, variance, and skewness. The number of governing equations in our model can be adjusted in order to capture different degrees of detail about the population. We compare our simplified model to direct Wright–Fisher simulations of evolution in several canonical fitness landscapes, and we find that our model provides a low-dimensional description of complex dynamics not typically explained by classical theory, such as cryptic selection forces due to selection on trait ranges, time-variation of the heritability, and nonlinear responses to stabilizing or disruptive selection due to asymmetric trait distributions. In addition to providing a framework for extending general understanding of common qualitative concepts in phenotypic evolution – such as fitness gradients, selection pressures, and heritability – our approach has practical importance for studying evolution in contexts in which genetic analysis is infeasible.
Keywords: Fitness distribution; Heritability; Phenotypic evolution; Breeder’s equation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580918301369
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:125:y:2019:i:c:p:20-29
DOI: 10.1016/j.tpb.2018.11.002
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().