Energetic constraints and the paradox of a diffusing population in a heterogeneous environment
Yuanshi Wang and
Donald L. DeAngelis
Theoretical Population Biology, 2019, vol. 125, issue C, 30-37
Abstract:
Previous mathematical analyses have shown that, for certain parameter ranges, a population, described by logistic equations on a set of connected patches, and diffusing among them, can reach a higher equilibrium total population when the local carrying capacities are heterogeneously distributed across patches, than when carrying capacities having the same total sum are homogeneously distributed across the patches. It is shown here that this apparently paradoxical result is explained when the resultant differences in energy inputs to the whole multi-patch system are taken into account. We examine both Pearl–Verhulst and Original Verhulst logistic models and show that, when total input of energy or limiting resource, is constrained to be the same in the homogeneous and heterogeneous cases, the total population in the heterogeneous patches can never reach an asymptotic equilibrium that is greater than the sum of the carrying capacities over the homogeneous patches. We further show that, when the dynamics of the limiting resources are explicitly modeled, as in a chemostat model, the paradoxical result of the logistic models does not occur. These results have implications concerning the use of some ubiquitous equations of population ecology in modeling populations in space.
Keywords: Pearl–Verhulst model; Chemostat model; Carrying capacity; Energy constraints; Discrete-patch model; Total realized asymptotic population abundance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580917301922
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:125:y:2019:i:c:p:30-37
DOI: 10.1016/j.tpb.2018.11.003
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().