EconPapers    
Economics at your fingertips  
 

Multi-task learning improves ancestral state reconstruction

Lam Si Tung Ho, Vu Dinh and Cuong V. Nguyen

Theoretical Population Biology, 2019, vol. 126, issue C, 33-39

Abstract: We consider the ancestral state reconstruction problem where we need to infer phenotypes of ancestors using observations from present-day species. For this problem, we propose a multi-task learning method that uses regularized maximum likelihood to estimate the ancestral states of various traits simultaneously. We then show both theoretically and by simulation that this method improves the estimates of the ancestral states compared to the maximum likelihood method. The result also indicates that for the problem of ancestral state reconstruction under the Brownian motion model, the maximum likelihood method can be improved.

Keywords: Ancestral state reconstruction; Multi-task learning; Maximum likelihood estimator (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580918301102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:126:y:2019:i:c:p:33-39

DOI: 10.1016/j.tpb.2019.01.001

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:126:y:2019:i:c:p:33-39