EconPapers    
Economics at your fingertips  
 

Sex: The power of randomization

Liudmyla Vasylenko, Marcus W. Feldman, Christos Papadimitriou and Adi Livnat

Theoretical Population Biology, 2019, vol. 129, issue C, 41-53

Abstract: In evolutionary biology, randomness has been perceived as a force that, in and of itself, is capable of inventing: mutation creates new genetic information at random across the genome which leads to phenotypic change, which is then subject to selection. However, in science in general and in computer science in particular, the widespread use of randomness takes a different form. Here, randomization allows for the breaking of pattern, as seen for example in its removal of biases (patterns) by random sampling or random assignment to conditions. Combined with various forms of evaluation, this breaking of pattern becomes an extraordinarily powerful tool, as also seen in many randomized algorithms in computer science. Here we show that this power of randomness is harnessed in nature by sex and recombination. In a finite population, and under the assumption of interactions between genetic variants, sex and recombination allow selection to test how well an allele will perform in a sample of combinations of interacting genetic partners drawn at random from all possible such combinations; consequently, even a small number of tests of genotypes such as takes place in a finite population favors alleles that will most likely perform well in a vast number of yet unrealized genetic combinations. This power of randomization is not manifest in asexual populations.

Keywords: Random sampling; Randomized algorithms; Sex and recombination; Epistasis (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580918300716
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:129:y:2019:i:c:p:41-53

DOI: 10.1016/j.tpb.2018.11.005

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:129:y:2019:i:c:p:41-53