EconPapers    
Economics at your fingertips  
 

Bayesian inference of natural selection from spatiotemporal phenotypic data

Olivier David, Gaëlle van Frank,, Isabelle Goldringer, Rivière, Pierre and Michel Turbet Delof

Theoretical Population Biology, 2020, vol. 131, issue C, 100-109

Abstract: Spatiotemporal variations of natural selection may influence the evolution of various features of organisms such as local adaptation or specialisation. This article develops a method for inferring how selection varies between locations and between generations from phenotypic data. It is assumed that generations are non-overlapping and that individuals reproduce by selfing or asexually. A quantitative genetics model taking account of the effects of stabilising natural selection, the environment and mutation on phenotypic means and variances is developed. Explicit results on the evolution of populations are derived and used to develop a Bayesian inference method. The latter is applied to simulated data and to data from a wheat participatory plant breeding programme. It has some ability to infer evolutionary parameters, but estimates may be sensitive to prior distributions, for example when phenotypic time series are short and when environmental effects are large. In such cases, sensitivity to prior distributions may be reported or more data may be collected.

Keywords: Adaptation; Evolution; Quantitative genetics; Statistics; Wheat (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580919301960
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:131:y:2020:i:c:p:100-109

DOI: 10.1016/j.tpb.2019.11.007

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:131:y:2020:i:c:p:100-109