Dispersal asymmetry in a two-patch system with source–sink populations
Hong Wu,
Yuanshi Wang,
Yufeng Li and
Donald L. DeAngelis
Theoretical Population Biology, 2020, vol. 131, issue C, 54-65
Abstract:
This paper analyzes source–sink systems with asymmetric dispersal between two patches. Complete analysis on the models demonstrates a mechanism by which the dispersal asymmetry can lead to either an increased total size of the species population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. For a large growth rate of the species in the source and a fixed dispersal intensity, (i) if the asymmetry is small, the population would persist in both patches and reach a density higher than that without dispersal, in which the population approaches its maximal density at an appropriate asymmetry; (ii) if the asymmetry is intermediate, the population persists in both patches but reaches a density less than that without dispersal; (iii) if the asymmetry is large, the population goes to extinction in both patches; (iv) asymmetric dispersal is more favorable than symmetric dispersal under certain conditions. For a fixed asymmetry, similar phenomena occur when the dispersal intensity varies, while a thorough analysis is given for the low growth rate of the species in the source. Implications for populations in heterogeneous landscapes are discussed, and numerical simulations confirm and extend our results.
Keywords: Spatially distributed population; Dispersal; Diffusion; Liapunov stability; Persistence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580919301935
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:131:y:2020:i:c:p:54-65
DOI: 10.1016/j.tpb.2019.11.004
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().