EconPapers    
Economics at your fingertips  
 

Local fluctuations of genetic processes defined on two time scales, with applications to effective size estimation

Hössjer, Ola and Peder A. Tyvand

Theoretical Population Biology, 2020, vol. 131, issue C, 79-99

Abstract: In this paper we develop a general framework for how the genetic composition of a structured population with strong migration between its subunits, evolves over time. The dynamics is described in terms of a vector-valued Markov process of allele, genotype or haplotype frequencies that varies on two time scales. The more rapid changes are random fluctuations in terms of a multivariate autoregressive process, around a quasi equilibrium fix point, whereas the fix point itself varies more slowly according to a diffusion process, along a lower-dimensional subspace. Under mild regularity conditions, the fluctuations have a magnitude inversely proportional to the square root of the population size N, and hence can be used to estimate a broad class of genetically effective population sizes Ne, with genetic data from one time point only. In this way we are able to unify a number of existing notions of effective size, as well as proposing new ones, for instance one that quantifies the extent to which genotype frequencies fluctuate around Hardy–Weinberg equilibrium.

Keywords: Autoregressive process; Effective population size; Markov process; Structured population; Quasi equilibrium (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580919301959
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:131:y:2020:i:c:p:79-99

DOI: 10.1016/j.tpb.2019.11.006

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:131:y:2020:i:c:p:79-99