Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model
Rui J. Costa and
Hilde M. Wilkinson-Herbots
Theoretical Population Biology, 2021, vol. 140, issue C, 1-15
Abstract:
The ‘isolation with migration’ (IM) model has been extensively used in the literature to detect gene flow during the process of speciation. In this model, an ancestral population split into two or more descendant populations which subsequently exchanged migrants at a constant rate until the present. Of course, the assumption of constant gene flow until the present is often over-simplistic in the context of speciation. In this paper, we consider a ‘generalised IM’ (GIM) model: a two-population IM model in which migration rates and population sizes are allowed to change at some point in the past. By developing a maximum-likelihood implementation of this model, we enable inference on both historical and contemporary rates of gene flow between two closely related populations or species. The GIM model encompasses both the standard two-population IM model and the ‘isolation with initial migration’ (IIM) model as special cases, as well as a model of secondary contact. We examine for simulated data how our method can be used, by means of likelihood ratio tests or AIC scores, to distinguish between the following scenarios of population divergence: (a) divergence in complete isolation; (b) divergence with a period of gene flow followed by isolation; (c) divergence with a period of isolation followed by secondary contact; (d) divergence with ongoing gene flow. Our method is based on the coalescent and is suitable for data sets consisting of the number of nucleotide differences between one pair of DNA sequences at each of a large number of independent loci. As our method relies on an explicit expression for the likelihood, it is computationally very fast.
Keywords: Speciation; Coalescent; Maximum-likelihood; Gene flow; Isolation; Secondary contact (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580921000186
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:140:y:2021:i:c:p:1-15
DOI: 10.1016/j.tpb.2021.03.001
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().