EconPapers    
Economics at your fingertips  
 

Adaptive meiotic drive in selfing populations with heterozygote advantage

Evgeny Brud

Theoretical Population Biology, 2022, vol. 146, issue C, 61-70

Abstract: The egalitarian allotment of gametes to each allele at a locus (Mendel’s law of segregation) is a near-universal phenomenon characterizing inheritance in sexual populations. As exceptions to Mendel’s law are known to occur, one can investigate why non-Mendelian segregation is not more common using modifier theory. Earlier work assuming sex-independent modifier effects in a random mating population with heterozygote advantage concluded that equal segregation is stable over long-term evolution. Subsequent investigation, however, demonstrated that the stability of the Mendelian scheme disappears when sex-specific modifier effects are allowed. Here I derive invasion conditions favoring the repeal of Mendelian law in mixed and obligate selfing populations. Oppositely-directed segregation distortion in the production of male and female gametes is selected for in the presence of overdominant fitness. The conditions are less restrictive than under panmixia in that strong selection can occur even without differential viability of reciprocal heterozygotes (i.e. in the absence of parent-of-origin effects at the overdominant fitness locus). Generalized equilibria are derived for full selfing.

Keywords: Mating system; Segregation distortion; Overdominance; Modifier theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580922000405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:146:y:2022:i:c:p:61-70

DOI: 10.1016/j.tpb.2022.06.001

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:146:y:2022:i:c:p:61-70