Evolutionary rescue via niche construction: Infrequent construction can prevent post-invasion extinction
Alexander Longcamp and
Jeremy Draghi
Theoretical Population Biology, 2023, vol. 153, issue C, 37-49
Abstract:
A population experiencing habitat loss can avoid extinction by undergoing genetic adaptation—a process known as evolutionary rescue. Here we analytically approximate the probability of evolutionary rescue via a niche-constructing mutation that allows carriers to convert a novel, unfavorable reproductive habitat to a favorable state at a cost to their fecundity. We analyze competition between mutants and non-niche-constructing wild types, who ultimately require the constructed habitats to reproduce. We find that over-exploitation of the constructed habitats by wild types can generate damped oscillations in population size shortly after mutant invasion, thereby decreasing the probability of rescue. Such post-invasion extinction is less probable when construction is infrequent, habitat loss is common, the reproductive environment is large, or the population’s carrying capacity is small. Under these conditions, wild types are less likely to encounter the constructed habitats and, consequently, mutants are more likely to fix. These results suggest that, without a mechanism that deters wild type inheritance of the constructed habitats, a population undergoing rescue via niche construction may remain prone to short-timescale extinction despite successful mutant invasion.
Keywords: Evolutionary rescue; Niche construction; Ecological inheritance; Post-invasion extinction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580923000369
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:153:y:2023:i:c:p:37-49
DOI: 10.1016/j.tpb.2023.06.002
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().