The optimal momentum of population growth and decline
Gustav Feichtinger and
Stefan Wrzaczek
Theoretical Population Biology, 2024, vol. 155, issue C, 51-66
Abstract:
About 50 years ago, Keyfitz (1971) asked how much further a growing human population would increase if its fertility rate were immediately to be reduced to replacement level and remain there forever. The reason for demographic momentum is an age–structure inertia due to relatively many potential parents because of past high fertility. Although nobody expects such a miraculous reduction in reproductive behavior, a gradual decline in fertility in rapidly growing populations seems inevitable. As any delay in fertility decline to a stationary level leads to an increase in the momentum, it makes sense to think about the timing and the quantum of the reduction in reproduction. More specifically, we consider an intertemporal trade-off between costly pro- and anti-natalistic measures and the demographic momentum at the end of the planning period. This paper uses the McKendrick–von Foerster partial differential equation of age–structured population dynamics to study a sketched problem in a distributed parameter control framework. Among the results obtained by applying an appropriate extension of Pontryagin’s Maximum Principle are the following: (i) monotony of adaptation efforts to net reproduction rate and convex decrease/concave increase (if initial net reproduction rate exceeds 1/is below 1); and (ii) oscillating efforts and reproduction rate if, additionally, the size of the total population does not deviate from a fixed level.
Keywords: Population momentum; Age-structured optimal control; Extended Maximum Principle; Adaptation of net reproduction rate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580923000813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:155:y:2024:i:c:p:51-66
DOI: 10.1016/j.tpb.2023.12.002
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().