EconPapers    
Economics at your fingertips  
 

Phase-type distributions in mathematical population genetics: An emerging framework

Asger Hobolth, Rivas-González, Iker, Mogens Bladt and Andreas Futschik

Theoretical Population Biology, 2024, vol. 157, issue C, 14-32

Abstract: A phase-type distribution is the time to absorption in a continuous- or discrete-time Markov chain. Phase-type distributions can be used as a general framework to calculate key properties of the standard coalescent model and many of its extensions. Here, the ‘phases’ in the phase-type distribution correspond to states in the ancestral process. For example, the time to the most recent common ancestor and the total branch length are phase-type distributed. Furthermore, the site frequency spectrum follows a multivariate discrete phase-type distribution and the joint distribution of total branch lengths in the two-locus coalescent-with-recombination model is multivariate phase-type distributed. In general, phase-type distributions provide a powerful mathematical framework for coalescent theory because they are analytically tractable using matrix manipulations. The purpose of this review is to explain the phase-type theory and demonstrate how the theory can be applied to derive basic properties of coalescent models. These properties can then be used to obtain insight into the ancestral process, or they can be applied for statistical inference. In particular, we show the relation between classical first-step analysis of coalescent models and phase-type calculations. We also show how reward transformations in phase-type theory lead to easy calculation of covariances and correlation coefficients between e.g. tree height, tree length, external branch length, and internal branch length. Furthermore, we discuss how these quantities can be used for statistical inference based on estimating equations. Providing an alternative to previous work based on the Laplace transform, we derive likelihoods for small-size coalescent trees based on phase-type theory. Overall, our main aim is to demonstrate that phase-type distributions provide a convenient general set of tools to understand aspects of coalescent models that are otherwise difficult to derive. Throughout the review, we emphasize the versatility of the phase-type framework, which is also illustrated by our accompanying R-code. All our analyses and figures can be reproduced from code available on GitHub.

Keywords: Coalescent; Laplace transform; Likelihood inference; Phase-type theory; Population genetics; Reward transformation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580924000212
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:157:y:2024:i:c:p:14-32

DOI: 10.1016/j.tpb.2024.03.001

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:157:y:2024:i:c:p:14-32