Persistence in repeated games encourages the evolution of spite
Shun Kurokawa
Theoretical Population Biology, 2024, vol. 158, issue C, 109-120
Abstract:
Social behavior is divided into four types: altruism, spite, mutualism, and selfishness. The former two are costly to the actor; therefore, from the perspective of natural selection, their existence can be regarded as mysterious. One potential setup which encourages the evolution of altruism and spite is repeated interaction. Players can behave conditionally based on their opponent's previous actions in the repeated interaction. On the one hand, the retaliatory strategy (who behaves altruistically when their opponent behaved altruistically and behaves non-altruistically when the opponent player behaved non-altruistically) is likely to evolve when players choose altruistic or selfish behavior in each round. On the other hand, the anti-retaliatory strategy (who is spiteful when the opponent was not spiteful and is not spiteful when the opponent player was spiteful) is likely to evolve when players opt for spiteful or mutualistic behavior in each round. These successful conditional behaviors can be favored by natural selection. Here, we notice that information on opponent players’ actions is not always available. When there is no such information, players cannot determine their behavior according to their opponent's action. By investigating the case of altruism, a previous study (Kurokawa, 2017, Mathematical Biosciences, 286, 94–103) found that persistent altruistic strategies, which choose the same action as the own previous action, are favored by natural selection. How, then, should a spiteful conditional strategy behave when the player does not know what their opponent did? By studying the repeated game, we find that persistent spiteful strategies, which choose the same action as the own previous action, are favored by natural selection. Altruism and spite differ concerning whether retaliatory or anti-retaliatory strategies are favored by natural selection; however, they are identical concerning whether persistent strategies are favored by natural selection.
Keywords: Evolutionary game theory; Spite; Repeated game; Persistence; Imperfect information; Anti-retaliation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580924000601
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:158:y:2024:i:c:p:109-120
DOI: 10.1016/j.tpb.2024.05.001
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().