The grapheme-valued Wright–Fisher diffusion with mutation
Andreas Greven,
Frank den Hollander,
Anton Klimovsky and
Anita Winter
Theoretical Population Biology, 2024, vol. 158, issue C, 76-88
Abstract:
In Athreya et al. (2021), models from population genetics were used to define stochastic dynamics in the space of graphons arising as continuum limits of dense graphs. In the present paper we exhibit an example of a simple neutral population genetics model for which this dynamics is a Markovian diffusion that can be characterized as the solution of a martingale problem. In particular, we consider a Markov chain in the space of finite graphs that resembles a Moran model with resampling and mutation. We encode the finite graphs as graphemes, which can be represented as a triple consisting of a vertex set (or more generally, a topological space), an adjacency matrix, and a sampling (Borel) measure. We equip the space of graphons with convergence of sample subgraph densities and show that the grapheme-valued Markov chain converges to a grapheme-valued diffusion as the number of vertices goes to infinity. We show that the grapheme-valued diffusion has a stationary distribution that is linked to the Griffiths–Engen–McCloskey (GEM) distribution. In a companion paper (Greven et al. 2023), we build up a general theory for obtaining grapheme-valued diffusions via genealogies of models in population genetics.
Keywords: Population genetics; Infinite alleles model; Ewens sampling formula; GEM-distribution; Graph-valued Markov chain; Graphons (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580924000406
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:158:y:2024:i:c:p:76-88
DOI: 10.1016/j.tpb.2024.04.007
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().