EconPapers    
Economics at your fingertips  
 

Identity-by-descent segments in large samples

Seth D. Temple and Elizabeth A. Thompson

Theoretical Population Biology, 2025, vol. 165, issue C, 10-21

Abstract: If two haplotypes share the same alleles for an extended gene tract, these haplotypes are likely to be derived identical-by-descent from a recent common ancestor. Identity-by-descent segment lengths are correlated via unobserved ancestral tree and recombination processes, which commonly presents challenges to the derivation of theoretical results in population genetics. We show that the proportion of detectable identity-by-descent segments around a locus is normally distributed when the sample size and the scaled population size are large. We generalize this central limit theorem to cover flexible demographic scenarios, multi-way identity-by-descent segments, and multivariate identity-by-descent rates. The regularity conditions on sample size and scaled population size are unlikely to hold in genetic data from real populations, but provide intuition for when the Gaussian distribution may be a reasonable approximate model for the IBD rate. We use efficient simulations to study the distributional behavior of the detectable identity-by-descent rate. One consequence of non-normality in finite samples is that a genome-wide scan looking for excess identity-by-descent rates may be subject to anti-conservative control of family-wise error rates.

Keywords: Identity-by-descent; Coalescent; Covariance; Asymptotic normality (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580925000395
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:165:y:2025:i:c:p:10-21

DOI: 10.1016/j.tpb.2025.06.003

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-09
Handle: RePEc:eee:thpobi:v:165:y:2025:i:c:p:10-21