The positive effects of negative interactions: Can avoidance of competitors or predators increase resource sampling by prey?
Adrian V. Bell,
Russell B. Rader,
Steven L. Peck and
Andrew Sih
Theoretical Population Biology, 2009, vol. 76, issue 1, 52-58
Abstract:
Spatial overlap between predators and prey is key to predicting their interaction strength and population dynamics. We constructed a spatially-explicit simulation model to explore how predator and prey behavioral traits and patterns of resource distribution influence spatial overlap between predators, prey, and prey resources. Predator and prey spatial association primarily followed the ideal free distribution. Departures from this model were intriguing, especially from the interactions of predator and prey behavior. When prey weakly avoided conspecifics, they associated more highly with resources when predators were present. Predators increased the rate of prey movement between patches, which increased their ability to sample their environment and aggregate in patches with high resources. When prey strongly avoided each other, predators decreased prey association with resources. That is, an increased rate of prey movement increased the probability that prey would interact and avoid each other without regard to the distribution of resources. More generally, a more highly clumped distribution of resources acted as a spatial anchor that generally increased prey, predator, and resource association. Prey tended to congregate with resources and predators generally congregated with prey.
Keywords: Spatial dynamics; Cellular automata (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580909000379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:76:y:2009:i:1:p:52-58
DOI: 10.1016/j.tpb.2009.03.008
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().