Sequential Markov coalescent algorithms for population models with demographic structure
A. Eriksson,
B. Mahjani and
B. Mehlig
Theoretical Population Biology, 2009, vol. 76, issue 2, 84-91
Abstract:
We analyse sequential Markov coalescent algorithms for populations with demographic structure: for a bottleneck model, a population-divergence model, and for a two-island model with migration. The sequential Markov coalescent method is an approximation to the coalescent suggested by McVean and Cardin, and by Marjoram and Wall. Within this algorithm we compute, for two individuals randomly sampled from the population, the correlation between times to the most recent common ancestor and the linkage probability corresponding to two different loci with recombination rate R between them. These quantities characterise the linkage between the two loci in question. We find that the sequential Markov coalescent method approximates the coalescent well in general in models with demographic structure. An exception is the case where individuals are sampled from populations separated by reduced gene flow. In this situation, the correlations may be significantly underestimated. We explain why this is the case.
Keywords: Coalescent; Sequential Markov coalescent; Recombination; Population structure (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580909000677
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:76:y:2009:i:2:p:84-91
DOI: 10.1016/j.tpb.2009.05.002
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().