Canards and mixed-mode oscillations in a forest pest model
Brøns, Morten and
Rune Kaasen
Theoretical Population Biology, 2010, vol. 77, issue 4, 238-242
Abstract:
We consider a three-variable forest pest model, proposed by Rinaldi & Muratori (1992) [Rinaldi, S., Muratori, S., 1992. Limit cycles in slow–fast forest–pest models. Theor. Popul. Biol. 41, 26–43]. The model allows relaxation oscillations where long pest-free periods are interspersed with outbreaks of high pest concentration. For small values of the timescale of the young trees, the model can be reduced to a two-dimensional model. By a geometrical analysis we identify a canard explosion in the reduced model, that is, a change over a narrow parameter interval from outbreak dynamics to small oscillations around an endemic state. For larger values of the timescale of the young trees the two-dimensional approximation breaks down, and a broader parameter interval with mixed-mode oscillations appear, replacing the simple canard explosion. The analysis only relies on simple and generic properties of the model, and is expected to be applicable in a larger class of multiple timescale dynamical models.
Keywords: Canards; Forest pest; Mixed-mode oscillations (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580910000146
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:77:y:2010:i:4:p:238-242
DOI: 10.1016/j.tpb.2010.02.003
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().