Survivor’s dilemma: Defend the group or flee?
Garay, József and
Varga, Zoltán
Theoretical Population Biology, 2011, vol. 80, issue 3, 217-225
Abstract:
We consider a survival game of gregarious individuals, in which the aim of the players is survival to reproductive age under predator attacks. The survivor’s dilemma (shortly: SVD) game consists in the following: a group member either surely survives alone by fleeing, while its defensive mate may be killed; or tries to save its mate’s life, risking to get killed. The dilemma is that, in every single attack, fleeing ensures maximal survival probability, but if its mate survives by fighting both, and they remain together, its risk to be killed at the next attack will be lower. We show that, if defense is successful enough, then the one-attack game is a prisoner’s dilemma (PD), where fleeing is the strict ESS. We have additively decomposed the SVD game, according to the survival of the group mate of the focal prey, into two games: the aim of the “collective game†is survival of the group of prey. Counter-wise, the aim of the “hostile game†is survival alone (focal prey survives and its mate is killed by the predator). We obtain the following results: if the attack number is large enough, the multi-attack SVD game is dominated by the “collective game†in the sense that each individual can ensure its own maximal survival probability by maximizing the group survival probability in each attack. In the hostile game, the only strict ESS is the fleeing strategy. In the collective game there are two different cases: either defense is a unique strict ESS, or the collective game is bistable, i.e. fleeing and defense are local strict ESS’s. If defense is the only strict ESS in the collective game, and the attack number is large enough, defense replaces fleeing strategy in the multi-attack SVD game. However, in the bistable case, defense cannot invade into the fleeing population. It is shown that, if the interaction between relatives is frequent enough, than defense can replace fleeing strategy, in spite of the fact that in the well-mixed population the collective game is bistable.
Keywords: Collective game; Cooperation; Game between relatives; Group selection; Hostile game (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580911000724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:80:y:2011:i:3:p:217-225
DOI: 10.1016/j.tpb.2011.08.003
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().