Effects of encounter in a population of spatial prisoner’s dilemma players
Chunyan Zhang,
Jianlei Zhang,
Guangming Xie and
Long Wang
Theoretical Population Biology, 2011, vol. 80, issue 3, 226-231
Abstract:
We study the evolution of cooperation in spatial prisoner’s dilemma games, whereby each player extends its interaction scope by trying to interact with a certain number of encounters randomly chosen from its non-neighbors, in addition to its permanently linked nearest neighbors. Furthermore, the non-neighbors treat the initiative interactions in two scenarios: definitely accepting that from the cooperators, whereas guardedly interacting with defectors with an acceptance probability which may take arbitrary value in [0,1]. Importantly, our results reveal that the proposed encounter mechanism is a potent extrinsic factor that is able to boost cooperation when appropriately adjusting the values of the encounter number and acceptance probability, though rational players would always defect in one-shot encounters, regardless of the action from the counterparts. We hope our studies may help understand that the proposed encounter mechanism is also an important ingredient of a flourishing cooperative society.
Keywords: Evolutionary game theory; Evolution; Strategy (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580911000591
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:80:y:2011:i:3:p:226-231
DOI: 10.1016/j.tpb.2011.06.007
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().