EconPapers    
Economics at your fingertips  
 

A theoretical study of the role of spatial population structure in the evolution of parasite virulence

Steven D. Webb, Matt J. Keeling and Mike Boots

Theoretical Population Biology, 2013, vol. 84, issue C, 36-45

Abstract: The rich theory of infectious disease modelling using the Susceptible–Infectious–Recovered (SIR) framework is mainly based on the assumption of a well-mixed population, under which evolutionary behaviours (typically derived using adaptive dynamics) are shown to depend critically on the qualitative features of a virulence-transmission trade-off. Spatial extensions of this work, using simulation studies, show multiple evolutionary outcomes, which strongly depend on trade-off shape and, additionally, the length scale of the infectious process. In this paper, we aim to shed analytical insight into the mechanisms underlying these spatial evolutionary outcomes. In particular, why there is a qualitative difference observed in the evolutionary predicted virulence rates between linear and decelerating trade-offs between transmission and virulence and how recovery can weaken the effect of space. We use both pair approximations and cellular automata to model the spatial populations and the analysis exploits small neighbourhood variations in the spatial settings. The evolutionary outcomes are derived using adaptive dynamics.

Keywords: Evolution; Parasites; Virulence; Transmission; Space; Acquired immunity (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580912001244
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:84:y:2013:i:c:p:36-45

DOI: 10.1016/j.tpb.2012.11.008

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:thpobi:v:84:y:2013:i:c:p:36-45