A model of pedestrian delay at unsignalized intersections in urban networks
Yinan Zheng and
Lily Elefteriadou
Transportation Research Part B: Methodological, 2017, vol. 100, issue C, 138-155
Abstract:
Delay is an important performance measure for pedestrian crossings considering their interactions with other road users. This study provides an improved analytical model to mathematically estimate pedestrian delay using renewal theory, which considers driver yielding and vehicle platooning. A generalized model is first provided to accommodate different traffic flow and driver behavior assumptions. Then the proposed model is developed on the basis of a mixture of free traffic and platooned traffic with consideration of driver yielding behaviors to better replicate field conditions in an urban setting. A second application using the HCM 2010 assumptions is also derived to compare it to the HCM 2010 model. Lastly, field data were collected and used for validation from two locations: Gainesville, FL and Washington, D.C. A simulation via MATLAB is performed to evaluate the model results for a variety of cases. The comparisons to the field data as well as the simulation confirm the applicability and accuracy of the proposed model. It is also found that the current HCM 2010 model overestimates the pedestrian delay compared with field data.
Keywords: Pedestrian delay; Renewal theory; Urban networks (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515301399
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:100:y:2017:i:c:p:138-155
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2017.01.018
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().