Automatic identification of near-stationary traffic states based on the PELT changepoint detection
Qinglong Yan,
Zhe Sun,
Qijian Gan and
Wen-Long Jin
Transportation Research Part B: Methodological, 2018, vol. 108, issue C, 39-54
Abstract:
The existence of stationary states during peak periods has been an underlying assumption of many studies on analysis, operations, control, and management of transportation networks. In Cassidy (1998), a method was proposed to manually identify near-stationary states by visually inspecting transformed curves of cumulative total vehicle counts and occupancies. Such near-stationary states are important for calibrating fundamental diagrams, identifying active bottlenecks and incidents, and quantifying capacity drop magnitudes. To the best of our knowledge, however, there lacks an automatic method that can be applied to efficiently identify near-stationary states from a large amount of data.
Keywords: Near-stationary states; PELT changepoint detection; Cassidy’s gap and duration criteria; Four-step identification method; Fundamental diagram calibration (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517311050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:108:y:2018:i:c:p:39-54
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2017.12.007
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().