Economics at your fingertips  

The identical-path truck platooning problem

Nils Boysen, Dirk Briskorn and Stefan Schwerdfeger

Transportation Research Part B: Methodological, 2018, vol. 109, issue C, 26-39

Abstract: Platooning has been identified as a promising way to reduce the carbon footprint and fuel consumption of freight transportation. Recent technological developments connecting a platoon via digital data transmission even allow that the driver of the front truck controls all (unmanned) follower vehicles. Existing research mainly focuses on the technological and safety aspects of controlling the trucks and their distances. However, the efficiency of platooning is not only dependent on the aerodynamic drag, which considerably reduces with decreasing inter-vehicle distance; it is also influenced by the platoon formation process. To explore the impact of this and other neglected aspects on the efficiency of platooning (i.e., the diffusion of platooning technology, maximum platoon lengths, and the trucks’ willingness-to-wait for partners) a basic scheduling problem for the platoon building process along a single path is investigated. By differentiating problem characteristics, e.g., the objective function, we derive different problem settings for which a detailed analysis of computational complexity is provided. Efficient algorithms are derived and applied to explore the impact of the diffusion of platooning technology, the maximum platoon length, and the tightness of time windows. Our results show that these factors can considerably reduce the positive effects of truck platooning, and, thus, the benefit may diminish.

Keywords: Transportation; Green logistics; Platooning; Vehicle scheduling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-05-05
Handle: RePEc:eee:transb:v:109:y:2018:i:c:p:26-39