EconPapers    
Economics at your fingertips  
 

Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models

Seheon Kim, Soora Rasouli, Harry Timmermans and Dujuan Yang

Transportation Research Part B: Methodological, 2018, vol. 111, issue C, 168-184

Abstract: When collecting panel data, we need to acknowledge that responses do not represent independent measurements. The known apparatus in transportation research offers several opportunities to estimate panel effects for well-known and widely applied models such as hazard and dynamic logit models. However, the transportation research community is not endowed with a rich set of methods to account for panel effects in dynamic probabilistic decision trees, which have been used as a formalism for the representation of decision heuristics. Building on scarce prior work in statistics, we elaborate an approach to estimate panel effects in dynamic probabilistic decision trees with multinomial action states. Given that panel data naturally have a hierarchical structure with repeated measures nested within individuals, we implement a mixed-effects model that simultaneously accounts for population-level effects (fixed effects), between-individual variances (random effects), and within-individual variances (autocorrelations). The approach uses an iterative estimation procedure between CHAID-based probabilistic tree induction and Bayesian generalized linear mixture modeling (GLMM). When extracting the dynamic probabilistic decision trees, it is assumed that the random effects are known, while it is assumed that the fixed effects are known when estimating the Bayesian GLMM. This iterative process continues until convergence is reached. A Monte Carlo technique is used to navigate between aggregate choice probabilities and individual level multinomial choices. We also test the significance of temporal autocorrelation within individuals. The suggested approach is illustrated using charging station choice of users of Plug-in Electric Vehicles (PEV). Results support the potential value of the suggested approach.

Keywords: Panel effects; Random effects; Temporal autocorrelation; Dynamic decision tree; Charging station choice (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517310275
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:111:y:2018:i:c:p:168-184

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2018.03.010

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:111:y:2018:i:c:p:168-184