EconPapers    
Economics at your fingertips  
 

A hierarchical mixture modeling framework for population synthesis

Lijun Sun, Alexander Erath and Ming Cai

Transportation Research Part B: Methodological, 2018, vol. 114, issue C, 199-212

Abstract: Synthetic population is a key input to agent-based urban/transportation microsimulation models. The objective of population synthesis is to reproduce the underlying statistical properties of real population based on available microsamples and marginal distributions. However, characterizing the joint associations among a large set of attributes is challenging because of the curse of dimensionality, in particular when attributes are organized in a hierarchical household-individual structure. In this paper, we use a hierarchical mixture model to characterize the joint distribution of both household and individual attributes. Based on this model, we propose a framework of generating representative household structures in population synthesis. The framework integrates three models: (1) probabilistic tensor factorization, (2) multilevel latent class model, and (3) rejection sampling. With this framework, one can generalize not only the associations of within- and cross-level attributes, but also reproduce structural relationships among household members (e.g., husband-wife). As a case study, we implement this framework based on the household interview travel survey (HITS) data of Singapore, and then use the inferred model to generate a synthetic population pool. This model demonstrates great potential in reproducing the underlying statistical distribution of real population. The generated synthetic population can serve as a replacement for census in developing agent-based models, with privacy and confidentiality being protected and preserved.

Keywords: Population synthesis; Multilevel latent class; Mixture model; Probabilistic tensor factorization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517308615
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:114:y:2018:i:c:p:199-212

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2018.06.002

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:114:y:2018:i:c:p:199-212