Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations
Xiaojie Luan,
Yihui Wang,
Bart De Schutter,
Lingyun Meng,
Gabriel Lodewijks and
Francesco Corman
Transportation Research Part B: Methodological, 2018, vol. 115, issue C, 72-94
Abstract:
We study the integration of real-time traffic management and train control by using mixed-integer nonlinear programming (MINLP) and mixed-integer linear programming (MILP) approaches. In Part 1 of the paper (Luan et al., 2018), three integrated optimization problems, namely the PNLP problem (NLP: nonlinear programming), the PPWA problem (PWA: piecewise affine), and the PTSPO problem (TSPO: train speed profile option), have been developed for real-time traffic management that inherently include train control. A two-level approach and a custom-designed two-step approach have been proposed to solve these optimization problems. In Part 2 of the paper, aiming at energy-efficient train operation, we extend the three proposed optimization problems by introducing energy-related formulations. We first evaluate the energy consumption of a train motion. A set of nonlinear constraints is first proposed to calculate the energy consumption, which is further reformulated as a set of linear constraints for the PTSPO problem and approximated by using a piecewise constant function for the PNLP and PPWA problems. Moreover, we consider the option of regenerative braking and present linear formulations to calculate the utilization of the regenerative energy obtained through braking trains. We focus on two objectives, i.e., delay recovery and energy efficiency, through using a weighted-sum formulation and an ε-constraint formulation. With these energy-related extensions, the nature of the three optimization problems remains same to Part 1. In numerical experiments conducted based on the Dutch test case, we consider the PNLP approach and the PTSPO approach only and compare their performance with the inclusion of the energy-related aspects; the PPWA approach is neglected due to its bad performance, as evaluated in Part 1. According to the experimental results, the PTSPO approach still yields a better performance within the required computation time. The trade-off between train delay and energy consumption is investigated. The results show the possibility of reducing train delay and saving energy at the same time through managing train speed, by up to 4.0% and 5.6% respectively. In our case study, applying regenerative braking leads to a 22.9% reduction of the total energy consumption.
Keywords: Real-time traffic management; Train control; Integrated optimization; Energy efficient train operation; Regenerative braking (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517311967
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:115:y:2018:i:c:p:72-94
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2018.06.011
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().