An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension
Kentaro Wada,
Kento Usui,
Tsubasa Takigawa and
Masao Kuwahara
Transportation Research Part B: Methodological, 2018, vol. 117, issue PB, 907-925
Abstract:
This study considers an optimal coordinated traffic signal control under both deterministic and stochastic demands. We first present a new mixed integer linear programming (MILP) for the deterministic signal optimization wherein traffic flow is modeled based on the variational theory and the constraints on a signal control pattern are linearly formulated. The resulting MILP has a clear network structure and requires fewer binary variables and constraints as compared with those in the existing formulations. We then extend the problem so as to treat the stochastic fluctuations in traffic demand. We here develop an accurate and efficient approximation method of expected delays and a solution method for the stochastic version of the signal optimization by exploiting the network structure of the problem. Using a set of proposed methods, we finally examine the optimal control parameters for deterministic and stochastic coordinated signal controls and discuss their characteristics.
Keywords: Coordinated signal control; Kinematic wave theory; Variational theory; Random arrival; Clark approximation; Cross-entropy method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S019126151730749X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:117:y:2018:i:pb:p:907-925
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2017.08.031
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().