Adaptive offsets for signalized streets
Carlos F. Daganzo,
Lewis J. Lehe and
Juan Argote-Cabanero
Transportation Research Part B: Methodological, 2018, vol. 117, issue PB, 926-934
Abstract:
This paper shows that severe congestion on streets controlled by traffic signals can be reduced by dynamically adapting the signal offsets to the prevailing density with a simple rule that keeps the signals’ green-red ratios invariant. Invariant ratios reduce a control policy’s impact on the crossing streets, so a policy can be optimized and evaluated by focusing on the street itself without the confounding factors present in networks. Designed for heavy traffic with spillovers, the proposed policies are adaptive and need little data – they only require average traffic density readings and no demand forecasts.
Keywords: ISTTT22; Traffic signals; Adaptive offsets; MFD; Congestion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261517306914
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:117:y:2018:i:pb:p:926-934
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2017.08.011
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().