EconPapers    
Economics at your fingertips  
 

Optimal traffic control at smart intersections: Automated network fundamental diagram

Mahyar Amirgholy, Mehdi Nourinejad and H. Oliver Gao

Transportation Research Part B: Methodological, 2020, vol. 137, issue C, 2-18

Abstract: Recent advances in artificial intelligence and wireless communication technologies have created great potential to reduce congestion in urban networks. In this research, we develop a stochastic analytical model for optimal control of communicant autonomous vehicles (CAVs) at smart intersections. We present the automated network fundamental diagram (ANFD) as a macro-level modeling tool for urban networks with smart intersections. In the proposed cooperative control strategy, we make use of the headway between the CAV platoons in each direction for consecutive passage of the platoons in the crossing direction through non-signalized intersections with no delay. For this to happen, the arrival and departure of platoons in crossing directions need to be synchronized. To improve system robustness (synchronization success probability), we allow a marginal gap between arrival and departure of the consecutive platoons in crossing directions to make up for operational error in the synchronization process. We then develop a stochastic traffic model for the smart intersections. Our results show that the effects of increasing the platoon size and the marginal gap length on the network capacity are not always positive. In fact, the capacity can be maximized by optimizing these cooperative control variables. We analytically solve the traffic optimization problem for the platoon size and marginal gap length and derive a closed-form solution for a normal distribution of the operational error. The performance of the network with smart intersections is presented by a stochastic ANFD, derived analytically and verified numerically using the results of a simulation model. The simulation results show that optimizing the control variables increases the capacity by 138% when the error standard deviation is 0.1 s.

Keywords: Communicant autonomous vehicles; Cooperative traffic control; Stochastic operational error; Platoon size; Inter-platoon headway; Macroscopic fundamental diagram (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261519302449
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:137:y:2020:i:c:p:2-18

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2019.10.001

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-09
Handle: RePEc:eee:transb:v:137:y:2020:i:c:p:2-18