Connecting urban transportation systems with the spread of infectious diseases: A Trans-SEIR modeling approach
Xinwu Qian and
Satish V. Ukkusuri
Transportation Research Part B: Methodological, 2021, vol. 145, issue C, 185-211
Abstract:
Urban transportation systems satisfy the essential mobility needs of the large-scale urban population, but it also creates an ideal environment that favors the spread of infectious diseases, leading to significant risk exposure to the massive urban population. In this study, we develop the mathematical model to understand the coupling between the spreading dynamics of infectious diseases and the mobility dynamics through urban transportation systems. We first describe the mobility dynamics of the urban population as the process of leaving from home, traveling to and from the activity locations, and engaging in activities. We then embed the susceptible-exposed-infectious-recovered (SEIR) process over the mobility dynamics and develops the spatial SEIR model with travel contagion (Trans-SEIR), which explicitly accounts for contagions both during travel and during daily activities. We investigate the theoretical properties of the proposed model and show how activity contagion and travel contagion contribute to the average number of secondary infections. We further develop an optimal control strategy for the effective entrance control of public transportation systems with optimal allocation of limited resources. In the numerical experiments, we explore how the urban transportation system may alter the fundamental dynamics of the infectious disease, change the number of secondary infections, promote the synchronization of the disease across the city, and affect the peak of the disease outbreaks. The Trans-SEIR model is further applied to understand the disease dynamics during early COVID-19 outbreak in New York City, where we show how the activity and travel contagion may be distributed and how effective entrance control can be implemented in urban transportation systems. The Trans-SEIR model, along with the findings in our study, may significantly improve our understanding of the coupling between urban transportation systems and disease dynamics, the development of quarantine and control measures for mitigating the disease risks and promoting the idea of disease-resilient urban transportation networks.
Keywords: Epidemic model; Urban transportation systems; Infectious disease; Travel contagion; Induced travel contagion; Optimal control (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261521000175
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:145:y:2021:i:c:p:185-211
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2021.01.008
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().