Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation
Yun Yuan,
Zhao Zhang,
Xianfeng Terry Yang and
Shandian Zhe
Transportation Research Part B: Methodological, 2021, vol. 146, issue C, 88-110
Abstract:
Despite the wide implementation of machine learning (ML) technique in traffic flow modeling recently, those data-driven approaches often fall short of accuracy in the cases with a small or noisy training dataset. To address this issue, this study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models (referred as physics models) into the ML architecture and to regularize the ML training process. More specifically, leveraging the Gaussian process (GP) as the base model, a stochastic physics regularized Gaussian process (PRGP) model is developed and a Bayesian inference algorithm is used to estimate the mean and kernel of the PRGP. A physics regularizer, based on macroscopic traffic flow models, is also developed to augment the estimation via a shadow GP and an enhanced latent force model is used to encode physical knowledge into the stochastic process. Based on the posterior regularization inference framework, an efficient stochastic optimization algorithm is then developed to maximize the evidence lowerbound of the system likelihood. For model evaluations, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah. Results show the new PRGP model can outperform the previous compatible methods, such as calibrated traffic flow models and pure machine learning methods, in estimation precision and is more robust to the noisy training dataset.
Keywords: Macroscopic traffic flow model; Physics regularized machine learning; Multivariate Gaussian process; Posterior regularization inference (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261521000369
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:146:y:2021:i:c:p:88-110
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2021.02.007
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().