EconPapers    
Economics at your fingertips  
 

Integrated train dwell time regulation and train speed profile generation for automatic train operations on high-density metro lines: A distributed optimal control method

Shukai Li, Ronghui Liu, Ziyou Gao and Lixing Yang

Transportation Research Part B: Methodological, 2021, vol. 148, issue C, 82-105

Abstract: The wide-spread application of automatic train operation (ATO) system on metro lines allows short service headways, high-density operations and high operation efficiency. This paper addresses real-time train control for ATO when faced with disturbances or disruptions in its operations. More specifically, the paper focuses on the design of integrated train dwell time regulation and speed profile generation in real-time and in response to dynamic changes in the operation environment. A nonlinear optimal control model is formulated in a rolling horizon scheme that incorporates three key operating elements: train timetable, passenger load and train speed profile. The objective is to simultaneously improve headway regularity and reduce the total energy consumptions. To satisfy the real-time control requirement for ATO system, a decomposition method based on the alternating direction method of multipliers (ADMM) is designed to divide the original optimization problem into many sub-problems, one for each train, which can then be computed in a distributed manner. Moreover, to address the non-convexity issue, a relax-round-polish process is developed to deal with the formulated nonlinear optimal control problem with convex objective over non-convex constraints in order to find the approximate solutions quickly for the embedded applications. The combined result is an ADMM-based heuristic algorithm. The effectiveness of the proposed model and solution algorithm is demonstrated using real-world data from the Changping Line of Beijing Metro. The results show that the proposed distributed and embedded optimization algorithm is able to significantly enhance the robustness and reliability of real-time train control in automated high-density metro lines.

Keywords: Metro lines; Train regulation; Speed profile generation; Alternating direction method of multipliers; Nonlinear optimal control (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261521000709
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:148:y:2021:i:c:p:82-105

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2021.04.009

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:148:y:2021:i:c:p:82-105