Incentive-based decentralized routing for connected and autonomous vehicles using information propagation
Chaojie Wang,
Srinivas Peeta and
Jian Wang
Transportation Research Part B: Methodological, 2021, vol. 149, issue C, 138-161
Abstract:
Routing strategies under the aegis of dynamic traffic assignment have been proposed in the literature to optimize system performance. However, challenges have persisted in their deployment ability and effectiveness due to inherent strong assumptions on traveler behavior and availability of network-level real-time traffic information, and the high computational burden associated with computing network-wide flows in real-time. To address these gaps, this study proposes an incentive-based decentralized routing strategy to nudge the network performance closer to the system optimum for the context where all vehicles are connected and autonomous vehicles (CAVs). The strategy consists of three stages. The first stage incorporates a local route switching dynamical system to approximate the system optimal route flow in a local area based on vehicles’ knowledge of local traffic information. This system is decentralized in the sense that it only updates the local route choices of vehicles in this area rather than route choices of all vehicles in the network, which circumvents the high computational burden associated with computing the flows on the entire network. The second stage optimizes the route for each CAV by considering individual heterogeneity in traveler preferences (e.g., the value of time) to maximize the utilities of all travelers in the local area. Constraints are also incorporated to ensure that these routes can achieve the approximated local system optimal flow of the first stage. The third stage leverages an expected envy-free incentive mechanism to ensure that travelers in the local area can accept the optimal routes determined in the second stage. The study analytically discusses the convergence of the local route switching dynamical system. We also show that the proposed incentive mechanism is expected individual rational and budget-balanced, which ensure that travelers are willing to participate and guarantee the balance between payments and compensations, respectively. Further, the conditions for the expected incentive compatibility of the incentive mechanism are analyzed and proved, ensuring behavioral honesty in disclosing information. Thereby, the proposed incentive-based decentralized routing strategy can enhance network performance and user satisfaction under fully connected and autonomous environments.
Keywords: Decentralized routing; Incentive mechanism; Connected and autonomous vehicle (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261521000837
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:149:y:2021:i:c:p:138-161
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2021.05.004
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().