Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts
Steffen O.P. Blume,
Francesco Corman and
Giovanni Sansavini
Transportation Research Part B: Methodological, 2022, vol. 161, issue C, 60-94
Abstract:
We propose a Bayesian inference approach for static Origin-Destination (OD)-estimation in large-scale networked transit systems. The approach finds posterior distribution estimates of the OD-coefficients, which describe the relative proportions of passengers travelling between origin and destination locations, via a Hamiltonian Monte Carlo sampling procedure. We suggest two different inference model formulations, the instantaneous-balance and average-delay model.The average-delay model is generally more robust in determining accurate and precise coefficient posteriors across various combinations of observation properties. The instantaneous-balance model, however, requires lower resolution count observations and produces estimates comparable to the average-delay model, pending that certain count observation properties are met. We demonstrate that the Bayesian posterior distribution estimates provide quantifiable measures of the estimation uncertainty and prediction quality of the model. Moreover, the Bayesian approach is at least as accurate as existing optimisation approaches and proves robust in scaling to high-dimensional underdetermined problems without suffering from the curse of dimensionality. The Bayesian instantaneous-balance model is applied to the New York City subway network, with several years of entry and exit count observations recorded at several hundred station turnstiles across the network. The posterior distribution estimates provide intuitive demand patterns and are projected to be more valuable than point estimates, since they allow for robust transport network designs that account for the uncertainty of network parameters.
Keywords: OD-estimation; Bayesian inference; Transit network; Nodal passenger count data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522000698
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:161:y:2022:i:c:p:60-94
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2022.04.006
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().