A stochastic optimization approach for the supply vessel planning problem under uncertain demand
A.M.P. Santos,
Kjetil Fagerholt,
Gilbert Laporte and
C. Guedes Soares
Transportation Research Part B: Methodological, 2022, vol. 162, issue C, 209-228
Abstract:
This paper presents a two-stage stochastic programming with recourse methodology to solve the Supply Vessel Planning Problem with Stochastic Demands (SVPPSD), a problem arising in offshore logistics and which generalizes the Periodic Vehicle Routing Problem with Stochastic Demands and Time Windows. In the SVPPSD, a fleet of vessels is used to deliver a regular supply of commodities to a set of offshore installations to ensure continuous production, with each installation requiring one or more visits per week and having stochastic demands. Both the onshore depot where the product to be distributed is kept and the offshore installations have time windows, and voyages are allowed to span more than one day. A solution to the SVPPSD consists in the identification of an optimal fleet of vessels and the corresponding weekly schedule. As a solution methodology, we embed a discrete-event simulation engine within a genetic search procedure to approximate the cost of recourse and arrive at the minimized expected cost solution. We make comparisons with two alternative approaches: an expected value problem with upscaled demand, and a chance-constrained algorithm. While alternative methodologies yield robust schedules, robustness is achieved mainly through an increase in fleet size. In contrast, a two-stage stochastic programming with recourse algorithm, by accounting for the cost of recourse in the search phase, and exploring a wider solution space, allows arriving at robust schedules with a smaller fleet size, thereby yielding significant cost savings. For the tested problem instances, the proposed algorithm leads to savings of approximately 10 to 15 million USD per year.
Keywords: Supply vessel planning problem; Stochastic programming; Stochastic demands (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522000923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:162:y:2022:i:c:p:209-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2022.05.015
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().