EconPapers    
Economics at your fingertips  
 

Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets

Martin Huber, Jonas Meier and Hannes Wallimann

Transportation Research Part B: Methodological, 2022, vol. 163, issue C, 22-39

Abstract: We assess the demand effects of discounts on train tickets issued by the Swiss Federal Railways, the so-called ‘supersaver tickets’, based on machine learning, a subfield of artificial intelligence. Considering a survey-based sample of buyers of supersaver tickets, we use causal machine learning to assess the impact of the discount rate on rescheduling a trip, which seems relevant in the light of capacity constraints at rush hours. Assuming that (i) the discount rate is quasi-random conditional on our rich set of characteristics and (ii) the buying decision increases weakly monotonically in the discount rate, we identify the discount rate’s effect among ‘always buyers’, who would have traveled even without a discount, based on our survey that asks about customer behavior in the absence of discounts. We find that on average, increasing the discount rate by one percentage point increases the share of rescheduled trips by 0.16 percentage points among always buyers. Investigating effect heterogeneity across observables suggests that the effects are higher for leisure travelers and during peak hours when controlling several other characteristics.

Keywords: Causal machine learning; Double machine learning; Treatment effect; Business analytics; Causal forest; Public transportation (search for similar items in EconPapers)
JEL-codes: C21 R41 R48 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522001059
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:163:y:2022:i:c:p:22-39

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2022.06.006

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:transb:v:163:y:2022:i:c:p:22-39